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ABSTRACT

This is one packet of notes accompanying a course Mechanics and Elec-
tromagnetism in Accelerators, offered as part of the U.S. Particle Accel-
erator School, Yale University, summer, 2002. The subject matter is ac-
tion/angle variables and adiabatic invariance, the latter of which is perhaps
the most essential concept of accelerator physics; at least it is the least un-
derstood of the essential concepts. This material is extracted, with little
modification, from my textbook, Geometric Mechanics. Though there is a
certain amount of introductory material some references may be unclear.
Following traditional discussions of Hamiltonian mechanics the independent
variable is taken to be the time ¢. Essentially the same equation will apply
to particle trajectories in an accelerator, but with ¢ replaced by longitudinal
coordinate s.



Analytic Basis for Approximation

Once equations of motion have been found they can usually be solved by straightfor-
ward numerical methods but numerical results rarely provide much general insight and
it is productive to develop analytic results to the extent possible. Since it is usually be-
lieved that the most essential “physics” is Hamiltonian, considerable effort is justified in
advancing the analytic formulation to the extent possible without violating Hamiltonian
requirements. One must constantly ask “is it symplectic”.

In this section the method of canonical transformation will be introduced and then
exercised by being applied to nonlinear oscillators. Oscillators of one kind or another are
probably the most ubiquitous systems analysed using classical mechanics. Some, such
as relaxation oscillators, are inherently non-sinuisoidal, but many exhibit motion that
is approximately simple harmonic. Some of the sources of deviation from harmonicity
are (usually weak) damping, Hooke’s law violating restoring forces, and parametric drive.
Hamiltonian methods, and in particular phase space representation, are especially effective
at treating these systems, and adiabatic invariance, to be defined shortly, is even more
important than energy conservation.

As well as the Lagrangian L(q, q,t), Hamiltonian mechanics inherits from Lagrangian

mechanics the definition of momenta

0L (q,4,1)
pi = T (1)
The Hamiltonian itself is defined by
H(q,p,t) =pig’ — L(a,a(a,p,1),1). (2)

(Summation over indices is implied in the term p;q‘). The only aspect of this that is not
entirely trivial is that, as indicated in the argument lists, velocities q have to be eliminated

in favor of the momentum variables p;.



CANONICAL TRANSFORMATIONS

The action as a generator of canonical transformations

We have encountered the Jacobi method within the Hamilton-Jacobi theory while
developing analogies between optics and mechanics. But it is possible to come upon this
procedure more formally while developing the theory of “canonical transformation” which
means transforming the equations in such a way that Hamilton’s equations remain valid.
The motivation for restricting the field of acceptable transformations in this way is provided
by the large body of certain knowledge one has about Hamiltonian systems, much of it

described in the previous chapter.

From a Hamiltonian system initially described by “old” coordinates ¢!, ¢?, -, ¢" and
“old” momenta p1,p2,---,p, we seek appropriate transformations
1 2 1 2
(q »q 7"'7qn;p17p27"'7pn) - (Q 7Q 7"'7Qn;P17P27"'7Pn)7 (3)
to “new coordinates” Q', Q2%, ---, Q" and “new momenta” P;, Py, ---, Pn.]L (Within

the Jacobi procedure these would have been known as [-parameters and a-parameters,
respectively.)

Within Lagrangean mechanics we have seen the importance of variational principles
in establishing the invariance to coordinate transformation of the form of the Lagrange
equations. Since we have assigned ourselves essentially the same task in Hamiltonian
mechanics it is appropriate to investigate Hamiltonain variational principles. This method
will prove to be successful in establishing conditions that must be satisfied by the new Q
and P variables.

In the context of Hamiltonian mechanics, the “action principle” asserts that the “Hamil-

ton integral”

P .

H.L =/ (pidg' — H (q,p,t)dt) ; (4)
P

is stationary for the actual motion of the system. Other than starting at P, and ending

at P, (and not being “pathological”) the path of integration is arbitrary in the extended
phase space ¢*, p; and t.

T Tt would be consistent with the more formally correct mathematical notation introduced previously to
use the symbol p; for momentum p; since the momenta are more properly thought of as forms, but this is
rarely done.



H.I. has the dimensions of action and we now subject it to analysis something like
that used in deriving the Lagrange equations from [ Ldt. In particular we seek the inte-
gration path for which H.I. achieves an ertreme value. In contrast to coordinate, velocity
space where Hamilton’s principle is applied in Lagrangian mechanics, consider independent
smooth phase space variations (dq,0p) away from an arbitrary integration path through
fixed end points (Py,t1) and (Ps,t2). (Forgive the fact that P is being used both for mo-
mentum components and to label end points.) Evaluating the variations of its two terms

individually, the condition for H.I. to achieve an extreme value is

Posta : . 9H . OH
0= / <6pi dq' + pid (6¢") — =—=0q¢" dt — —p; dt) . 5
P1,t1 ( ) 8qZ 8pl ( )

The last two terms come from [ Hdt just the way two terms come from [ Ld¢ in a La-
grangean derivation. Where the first two terms come from is illustrated in Fig. 1. At each
point on the unvaried curve incremental displacements dg(q) and dp(gq) locate points on
the varied curve. Since the end points are fixed the deviation dp vanishes at the ends and

d(0q") must average to zero as well as vanishing at the ends.
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Figure 1: Areas representing terms dpdq + pd(dq) in the Hamiltonian
variational integral.

With a view toward obtaining a common multiplicative factor in the integrand, using the
fact that the end points are fixed, the factor p;d(dq’) can be replaced by —dq’ dp; since
the difference d(p;dq’) is a total differential. Then, since the variations d¢’ and dp; are



arbitrary, Hamiltons equations follow;

5 0H . OH
= op and p; = o (6)

q

It has therefore been proved that Hamilton’s equations are implied by applying the varia-
tional principle to integral H.I. But that has not been our real purpose. Rather, as stated
previously, our purpose is to derive canonical transformations. Toward that end we intro-
ducel an arbitrary function G(q, Q,t) of old coordinates q and new coordinates Q and

alter H.I. slightly by subtracting the total derivative dG from its integrand;

Py )
HI = / (pidg" — Hdt — dG (q,Q,t))

Py
——/ﬂ di—Hﬁ—dif—aGag—Qgﬁ "
=/, pidg 97’ ~ 50,7 — 5 )-

This alteration cannot change the extremal path obtained by applying the same variational
principle since the integral over the added term is independent of path. We could subject
H.I' to a variational calculation like that applied to I but instead we take advantage of

the fact that G is arbitrary to simplify the integrand by imposing on it the condition

oG (q,Q, )
pi = T (8)
This simplifies Eq. (7) to
Py
HI = / (PidQ; — H'dt), (9)
Py
where we have introduced the abbreviations
8G (q7 Q7 t) / 8G

The former equation, with Eq. (8), define the coordinate transformation and the latter
equation gives the Hamiltonian in the new coordinates. The motivation for this choice of
transformation is that Eq. (9) has the same form in the new variables that Eq. (4) had in
the old variables. The equations of motion are therefore

OH'
oQ"

T Goldstein uses the notation F} (q,Q,t) for our function G(q, Q, t).

OH'
oF;’

Q' = and P, =— (11)




Since these are Hamilton’s equations in the new variables we have achieved our goal. The
function G(q, Q,t) is known as the “generating function” of the canonical transformation
defined by Eq. (8) and the first of Eqs. (10). The transformations have a kind of hybrid form
(and it is an inelegance inherent to the generating function procedure) with G depending
as it does on old coordinates and new momenta. Also there is still “housekeeping” to be
done, expressing the new Hamiltonian H' in terms of the new variables, and there is no

assurance that it will be possible to do this in closed form.

Though G could have been any function consistent with Eq. (8), if we conjecture
that G is a solution of the H-J equation H + 0G/0t = 0 we note from Eq. (10) that
the new Hamiltonian is given by H' = 0. Nothing could be better than a vanishing
Hamiltonian since, by Eqgs. (11), it implies the new coordinates and momenta are constants
of the motion. Stated conversely, if we had initially assigned ourselves the task of finding
coordinates that were constants of the motion we would have been led to the Hamilton-

Jacobi equation as the condition to be applied to generating function G.

The other equation defining the canonical transformation is the first of Eqgs. (10)

_9G(q, Q1)

P = ;
a0’

(12)
Without being quite the same, this relation resembles the Jacobi-prescription formula
B = 0S/0« for extracting constant of the motion 8 corresponding to separation constant
« in a complete integral of the H-J equation. It is certainly true that if G is a complete
integral and the P; are interpreted as the separation constants in that solution then the
quantities defined by Eq. (12) are constants of the motion. But, relative to the earlier
procedure, coordinates and momenta are interchanged. The reason is that the second

arguments of G have been taken to be coordinates rather than momenta.

We are therefore motivated to subtract the total differential of an arbitrary function

dS(q, P, t)]L (or rather, for reasons that will become clear immediately, the function d(S —

' Goldstein uses the notation F5(q,P,t) for our function S(q, P, ¢). This function is also known as “Hamil-
ton’s principal function”. Other generating functions, F3(p,Q,t) and Fy(p,P,t) in Goldstein’s notation ,
can also be used.



P;Q")) from the variational integrand;

P2 . . . .
HI = / <pidq’ a9 ap 9S4 pagi s Qldp,)

aq’ OP; ot
P; q )
;,2 (13)
= / (PdQ; — H'dt),
Py
where we have required
~_0S (q,P,t) i 08(q,P,t) p B oS

(It was only with the extra subtraction of d(P;Q") that the required final form was ob-
tained.) We have now reconstructed the entire Jacobi prescription. If dS(q,P,t) is a
complete integral of the H-J equation, with the P; defined to be the «a; separation con-
stants, then the 8; = Q* obtained from the second of Egs. (14) are constants of the motion.

Recapitulating: a complete integral of the H-J equation provides a generator for per-
forming a canonical transformation to new variables for which the Hamiltonian has the
simplest conceivable form—it vanishes—causing all coordinates and all momenta to be

constants of the motion.

Time-independent canonical transformation

Just as the Hamilton-Jacobi equation is the short-wavelength limit of the Schrodinger
equation, the time-independent H-J equation is the same limit of the time-independent
Schrodinger equation. As in the quantum case, methods of treating the two cases appear
to be rather different even though time independence is just a special case.

When it does not depend explicitly on time, the Hamiltonian is conserved, H(q,p) = E

and a complete integral of the H-J equation takes the form
S (qa t) = SO (q7 P) - K (t - tO) ) (15)

where the independent parameters are listed as P. The term action, applied to S up to

this point, is commonly also used to refer to Sy. T In this case the H-J becomes

0S5
H(q20) =k 1
<q, 8q> ’ (16)

T Goldstein uses the notation W (q, P) for our function Sp(q,P). This function is also known as “Hamil-
ton’s characteristic function”. Landau and Lifshitz call Sy the “abbreviated action”.



and a complete integral is defined to be a solution of the form
So = So (q,P) + const., (17)

with as many new parameters P; as there are coordinates. It is important to recognize
though that the energy E can itself be regarded as a Jacobi parameter, in which case the
parameter set P is taken to include F.

In this time-independent case it is customary to use Sp(q, P) (rather than S(q,P,t))
as the canonical generating function G. By the general theory (Eq. (15)), new variables

are then related to old by

0S5y ;05
et -, — . ]_8
In particular, taking F itself as one of the new momentum, its corresponding new coordi-
nate is
05y
= — 19

which is non-vanishing since the parameter set P includes E. Defined in this way Qg is

therefore not constant. The quantity whose constancy is assured by the Jacobi theory is

g—g = Qg —t+tg = constant. (20)
This show that Qg and time ¢ are essentially equivalent, differing at most by the choice
of what constitutes initial time. Eq. (20) is the basis of the statement that E and ¢ are
canonically conjugate variables. Continuing with the canonical transformation, the new
Hamiltonian is

050

H’(Q,P,t):HwLW:E. (21)

We have obtained the superficially curious result that in this simpler, time-independent,
case the Hamiltonian is less simple, namely non-vanishing, than in the time-dependent case.
This is due to our use of Sy rather than S as generating function. But H’ is constant,
which is good enough.]L

We can already test one of the Hamilton equations, namely the equation for Q E,
oH'

QE = 8—E =1, (22)

T When applying the Jacobi prescription in the time-independent case one must be careful not to treat E
as functionally dependent on any of the other P; though.



in agreement with Eq. (20). For the other momenta, not including E, Hamilton’s equations

are
oFE
oF;

Hence finding a complete integral of the time-independent H-J equation is tantamount to

P,=0, and Q'=

~0. (23)

having solved the problem.
Hamilton-Jacobi treatment of 1D simple harmonic motion

Though it is nearly the most elementary conceivable system, the one dimensional
simple harmonic oscillator is basic to most oscillations and provides a simple illustration
of the Jacobi procedure. This formalism may initially seem a bit “heavy” for such a simple
problem, but the entire theory of adiabatic invariance follows directly from it and nonlinear

oscillations cannot be satisfactorily analysed without this approach. The Hamiltonian is
2
p 1

H(q,p) = -+ §mw3q2- (24)
This yields as the (time-independent) H-J equation
1 (dSy)> 1
o () amedet = )

which can be solved to give

So (¢, E) = muw / w/QE ¢ dg. (26)

(The lower limit has been picked arbitrarily.) It will be necessary to handle the +1 am-
biguity coming from the square root on an ad hoc basis; here the positive sign has been
chosen. This is a complete integral in that it depends on E, which we now take as the
first (and only) “Jacobi momentum” that would previously have been denoted by «a; (or
—a1). Following the Jacobi procedure we next find g1, but which we will now call @,
or Qg since it is to be the “new coordinate” corresponding to E. (If we were to insist
on conventional terminology we would also introduce a “new momentum” P = E.) That
is, we are performing a transformation of phase space variables (z,p) — (@, P). Since
the main purpose of Sy(q, F) is to be differentiated, explicit evaluation of the integral in

Eq. (26) may not be necessary, but for definiteness the result is

mwy 2F E . 4 mwd
So(q, F) = —qy|— — — —q]. 27
0(a0, B) == N e ¢t + s ok (27)
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Figure 2: The phase space trajectory of simple harmonic motion is a circle
traversed at constant angular velocity wyp if the axes are ¢ and p/(muwy).
The shaded area enclosed within the trajectory for one cycle of the motion
in ¢ and p phase space is 2wl where I is the “action”.

By Jacobi’s defining equation for Qg we have

0S5 1 [ 1 1 mw?
== = | —————df = —sin /=2 q]. 28
QE 5F wO/O TR ¢ = sin ( 55 ¢ (28)
As previously warned, it is not obvious that Qg is a linear function of ¢ but from the

general theory we know this to be the case;

Qe =1—to. (29)
Combining Eqgs. (28) and (29) yields
2F
q= 5 sin wo (t —tp), (30)
mwg

which begins to look familiar. The corresponding variation of p is given by

9S50 2B 2 =V2mE cos wy (t —tp) . (31)

2
0q mwj
Phase space plots of the motion are shown in Fig. 2. From considerations of continuity in

this figure it has been necessary to restore the 4+ options for the square root that entered

in the first place. The trajectory equation is

2
pT 1 9
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ACTION-ANGLE VARIABLES

The action variable of a simple harmonic oscillator

The variation of action S along a true trajectory is given by

P
dS = pidq' — Hdt, or S(P)= / (pidq’ — Hdt) . (33)

Py
Applying this formula to the simple harmonic oscillator, since the path of integration is

a true particle trajectory, H = FE, the second term integrates to —FE(t — tp). Comparing

with Eq. (15), we obtain for the abbreviated action Sp(q) = || 11% pidg’, or in one dimension

So (q) = /q "p(d) e (34)

0
The word “action” has already been used to define the basic Lagrangian variational integral
and as a name for the function satisfying the H-J equation, but it now now acquires yet
another meaning as “1/27 times the phase space area enclosed after one cycle”. Because
this quantity will be used as a dynamic variable it is called the “action variable” I of the

oscillator.T For simple harmonic motion

1 1 1 2F E
I=— 'd':—//dd:—\/QE —_— = — 35
2T p(q) 1 2T P 27r7T " mw% wo (35)

The first form of integral here is a line integral along the phase space trajectory, the second
is the area in (gq,p) phase space enclosed by that curve. In quantum mechanics Planck’s
constant h specifies a definite area of phase space and the number of quantum states is
given by [ [ dp dq/h. (Reviewing the solution of the Schrodinger equation for a particle in
a box would confirm this at least approximately.) Commonly units are employed for which
h = h/(2r) =1 and in those units the number of states is given by 5= [ [ dp dgq. This is
a possible justification for, or at least mnemonic to remember, the factor 1/(27) entering
the conventional definition of I. This factor will also give the “right” period, namely 27,

for the motion expressed in terms of “angle variables” (to be introduced shortly).

t The terminology is certainly strained since I is usually called the “action variable”, in spite of the fact
that it is constant, but “variable” does not accompany “action” when describing Sy which actually does
vary. Next we will consider a situation in which I might be expected to vary, but will find (to high accuracy)
that it does not. Hence the name “action non-variable” would be more appropriate. Curiously enough the
word “amplitude” in physics suffers from the same ambiguity; in the relation z = acoswt it is ambiguous
whether the “amplitude” is z or a.
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Adiabatic invariance of the action /

Consider a one dimensional system which is an “oscillator” in the sense that coordinate
q returns to its starting point at some time. If the Hamiltonian is time-independent, the
energy is conserved, and the momentum p returns to its initial value when ¢ does. In this
situation, the area within the phase space trajectory is closed and the action variable I
just introduced is unambiguously defined.

Suppose however that the Hamiltonian H(q,p,t), and hence the energy E(t) have a

weak dependence on time that is indicated by writing
E(t) = H(q,p,t) = H(q,p, A (1)) - (36)

The variable A has been introduced artificially to consolidate whatever time dependence
exists into a single parameter for purposes of the following discussion. At any time ¢ the
energy E(t) is defined to have the value it would have if A(¢) were held constant at its
current instantaneous value. Any nonconstancy of E(t) reflects the time dependence of
H. The prototypical example of this sort of time dependency is parametric variation—for
example, the “spring constant” k, a “parameter” in simple harmonic motion, might vary
slowly with time, & = k(t). Eventually what constitutes “slow” will be made more precise
but, much like short wavelength approximations previously encountered, the fractional
change of frequency during one oscillation period is required to be small. Motion with A
fixed /variable will be called “unperturbed/perturbed.”

During perturbed motion the particle energy,
E(t) = H(g,p,A (1)), (37)

varies, possibly increasing during some parts of the cycle and decreasing during others,
and probably accumulating appreciably over many cycles. We are now interested in the
systematic or averaged-over-one-cycle variation of quantities like E(t) and I(t).

The “time average” f(t) of a variable f(¢) that describes some property of a periodic

oscillating system having period T is defined to be

o t+T
ft) = % /t f(t')at'. (38)

From here on we take t = 0.
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Let us start by estimating the rate of change of E as A varies. Since A(t) is assumed to
vary slowly and monitonically over many cycles, its average rate of change m and its
instantaneous rate of change dA/dt differ negligibly, making it unnecessary to distinguish
between these two quantities. But the variation of E will tend to be correlated with
the instantaneous values of ¢ and p so E can be expected to be above average at some

times and below average at others. We seek the time-averaged value dE/dt. To a lowest

approximation we anticipate dE/dt ~ d\/dt unless it should happen (which it won’t) that
dFE/dt vanishes to this order of approximation.

Two features that complicate the present calculation are that the perturbed period
T is in general different from the unperturbed period and that the phase space orbit is
not in general closed so its enclosed area is poorly defined. To overcome these problems
the integrals will be recast as integrals over one cycle of coordinate ¢, since ¢ necessarily

returns to its starting value, say ¢ = 0. (We assume ¢(t = 0) # 0.) The action variable

(B, = o 74 p (g, B, ) dg (39)

is already written in this form.

From Eq. (37) the instantaneous rate of change of energy is given by

4E _ 0H d)
dt O\ dt’
and its time average is therefore given by

dE  dx1 (T oH

(Because of the assumed slow, monotonic variation of A(t) it is legitimate to move the %
factor outside the integral in this way.) To work around the dependence of T on A we
recast this expression in terms of phase space line integrals. Using Hamilton’s equations

we obtain
1

8H/8p|q,,\

_OH

dqg = —
p aA

dt, and hence T :f{ dq. (42)

Here we must respect the assumed functional form H(q,p,t) and, to emphasize the point,
have indicated explicitly what variables are being held constant for the partial differen-

tiation. (To be consistent we should have similarly written 0H/0\|; ), in the integrand
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of Eq. (41).) Making the same substitution (42) in the numerator, formula (41) can be

dt — dt 8H/3p|q)\ 8H/8p|qx

Since this expression is already proportional to dA/dt which is the order to which we are

written

working, it is legitimate to evaluate the two integrals using the unperturbed motion. Terms

neglected by this procedure are proportional to dA/dt and give only contributions of order

(d\/dt)? to dE/dt. (This is the sort of maneuver that one always resorts to in perturbation
theory.)

The unperturbed motion is characterized by functional relation (37) and its “inverse”
E=H(q,p,\), and p=p(¢,\,E), or E=HI(q,p(qg\E),N\). (44)

From now on, since A is constant because unperturbed motion is being described, it will
be unnecessary to list it among the variables being held fixed during differentiation. Dif-
ferentiating the third formula with respect to E yields

1 _ Op

N 4
oH/opl, ~ OB|, (45)

which provides a more convenient form for one of the factors appearing in the integrands

of Eq. (43). Differentiating the third of Eqgs. (44) with respect to A yields

- OH| Oop 4 % = _Op (46)
p |, 20X g O,y OH /0p|g» O, g
Finally, substituting these expressions into Eq. (43) yields
dE  dx 1
S (17)

At~ dt T | OMgE

As stated previously, the integral is to be performed over the presumed-to-be-known un-
perturbed motion.
We turn next to the similar calculation of dI/dt. Differentiating Eq. (39) with respect
to t, using Eq. (40) and the first of Eqs. (42) yields
T () o) Lo Y,
dt 2w OElq OXlgp  OANlgE (48)

dA/dt faH/an,p N ]{ o
T Ton oH/opl, "1 21 J oxlem
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From the second of Eqs. (46) it can then be seen that
W J—
dt

Of course this is only approximate since terms of order (dA/dt)? have been dropped. Even

0. (49)

so this is one of the most important formulas in mechanics. It is usually stated as the action
variable is an adiabatic invariant. That this is not an eract result might be regarded as
detracting from its elegance, utility and importance. In fact the opposite is true since, as
we shall see, it is often an extremely accurate result, with accuracy in parts per million
not uncommon. This would make it perhaps unique in physics—an approximation that
is as good as an exact result—except that the same thing can be said for the whole of
Newtonian mechanics. It is still possible for I to vary throughout the cycle, as an example
in section 6 will show, but its average is constant.
There is an important relation between action I and period T' (or equivalently frequency
w = 27 /T) of an oscillator. Differentiating the defining equation (39) for I with respect
to E, and using Eq. (45) and Eq. (42) yields
ol 1 dp 1 dq 1
EE::ZR%EEqA 1= 5x J omH/ap W
This formula can be checked immediately for simple harmonic motion. In Eq. (35) we had

I = E/wy and hence

1 T

E— = o0
oX 21 21 ( )

%:i:%. (51)

Recapitulating, we have considered a system with weakly time-dependent Hamiltonian

H, with initial energy Fy determined by initial conditions. Following the continuing evolu-
tion of the motion, the energy, because it is not conserved, may have evolved appreciably to
a different value E. Accompanying the same evolution, other quantities such as (a priori)
action I and oscillation period T' also vary. The rates dE/dt, dI/dt, d\/dt, etc. are all
proportional to d\/dt—doubling dA/dt, doubles all rates for small dA/dt. Since these rates
are all proportional, it should be possible to find some combination that exhibits a first
order cancellation and such a quantity is an “adiabatic invariant” that can be expected to
vary only weakly as A is varied. It has been shown that I itself is this adiabatic invariant.
In thermodynamics one considers “quasistatic” variations in which a system is treated

as static even if it is changing slowly and this is what we have been doing here, so “qua-

sistatic” invariant would be slightly more apt than “adiabatic”, which in thermodynamics
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means that the system under discussion is isolated in the sense that heat is neither added
nor subtracted from the system. But the terminology is not entirely inappropriate since we
are considering the effect of purely mechanical external intervention on the system under
discussion.

There is an important connection between quantized variables in quantum mechanics
and the adiabatic invariants of the corresponding classical system. Suppose a quantum
system in a state with given quantum numbers is placed in an environment with vary-
ing parameters (such as time varying magnetic field, for example) but that the variation
is never quick enough to induce a transition. Let the external parameters vary through
a cycle that ends with the same values as they started with. Since the system has never
changed state it is important that the physical properties of that state should have returned
to their starting values—mnot just approximately, but exactly. This is what distinguishes
an adiabatic invariant. This strongly suggests that the dynamical variables whose quantum
numbers characterize the stationary states of quantum systems have adiabatic invariants as
classical analogs. The Bohr-Somerfeld atomic theory, that slightly predated the discovery
of quantum mechanics, was based on this principle. Though it became immediately obso-
lete, this theory was not at all ad hoc and hence had little in common with what passes
for “the Bohr-Somerfeld model” in modern sophomore physics courses, In short, the fact
that the action is an adiabatic invariant makes it no coincidence that Planck’s constant is

called “the quantum of action”.
Action/angle conjugate variables

Because of its adiabatic invriance, the action variable I is an especially appropriate
choice as parameter in applying the Jacobi procedure to a system with slowly varying
parameters. We continue to focus on oscillating systems. Recalling the earlier discussion

of time-independent canonical transformations, we introduce the abbreviated action

q
So(a,T,\) = /0 p(d I\ dd. (52)

Until further notice A will be taken as constant but it will be carried along explicitly in
preparation for allowing it to vary later on. Since A is constant, both E and I are constant,

and either can be taken as the Jacobi “momentum” parameter; previously we have taken
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E, now we take I, which is why the arguments of Sy have been given as (¢, I, A). Since

holding F fixed and holding I fixed are equivalent,

250
dq

98,

=— (53)
E\ dq

I
Being a function of ¢ through the upper limit of its defining equation, Sy(q, I, A) increases

by 27l as q completes one cycle of oscillation since, as in Eq. (39),

(BN =5 75 p(¢, B (), ) dq. (54)

Using So(g, I, A) defined by Eq. (52) as the generator of a canonical transformation Eqgs. (18)

become
o aSO (Q7I?)‘) _ 3SO(Q,I,)\)

where ¢, the new coordinate conjugate to new momentum I, is called an “angle variable”.

(55)

For the procedure presently under discussion to be useful it is necessary for these equations
to be reduced to explicit transformation equations (g, p) — (I, ¢), such as Egs. (62) of the
next section. By Eq. (21) the new Hamiltonian is equal to the energy (expressed as a

function of I)

H (I,o,)\)=FE(I,)\), (56)
and Hamilton’s equations are
. OH' OFE (I, )
agp 07 an QO aI w ( Y ) Y (57)

where Eq. (50) has been used, and the symbol w(I, ) has been introduced to stand for

the oscillator frequency. Integrating the second equation yields
o =w(l,A)(t—t). (58)

This is the basis for the name “angle” given to ¢. It is an angle that advances through 27
as the oscillator advances through one period.

In these (¢,p) — (¢, I) transformation formulas, A\ has appeared simply as a fixed
parameter. One way to exploit the concept of adiabatic invariance is now to permit A to
depend on time in a formula such as the second of Eqs. (57), ¢ = w(I, A(t)). This formula,

giving the angular frequency of the oscillator when A is constant, will continue to be valid
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with the value of I remaining constant, even if A varies arbitrarily, as long as its variation
over one cycle is negligible when the frequency is being observed.

A more powerful way of proceeding is to recognize that it is legitimate to continue
using Egs. (55) as transformation equations, even if A varies, provided A is replaced by
A(t) everywhere it appears. The generating function is then Sy(g, I, A(t)) and ¢ will still
be called the “angle variable”, conjugate to I. Using Eq. (9), and taking account of the

fact that the old Hamiltonian is now time-dependent, the new Hamiltonian is

0Sy 0S|
/ g0 _ vQo
H' (p,I,t)=H + 5 E(I,\(t)+ o qIA. (59)
The new Hamilton equations are
j - - i 850 }‘7
dp \ OA ol
’ (60)

,_ OBUN) |0 (@

oI oI \ o\

A,
q,1

Since no approximations have been made these are exact equations of motion provided the

function Sy has been derived without approximation.
Parametrically-driven simple harmonic motion

Generalizing simple harmonic motion by allowing the spring constant k(¢) to be time-

dependent, the Hamiltonian ist

2
p 1 2 2
H t)=—4+-mA(t)q". 61
(008) = 2+ Zmd (1) g (61)
Though time-dependent, this Hamiltonian represents a linear oscillator because the fre-

quency is independent of amplitude. The time-independent transformations corresponding

to Egs. (55) can be adapted from Eq. (30) by substituting wg = A\, F = Iwp = I\, and

\/ )\2 sin g = \/ sin @, (62)

p(I,¢) = V2ImX cos .

wo(t — to) = 3

' In accelerator physics, while describing the motion of a particle, the independent variable, instead of
time ¢, is taken to be a longitudinal spatial variable s. Note that, with ¢ replaced by s, Eq. (61) describes
one dimensional betatron motion. Its solution must necessarily reduce to the Courant-Snyder formalism.
This line of reasoning is pursued in the problems.
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The abbreviated action is given by

mA
2

-1 mA
_ 1 gl - (q I) 2 13 1
So(q, I,\)= | pdq =21 cos” ©'dy'. (63)

The dependence on ¢ is through its presence in the upper limit. This dependence can be

re-arranged as

21
A= —"— sin?o. 64
q2m sin” ¢ ( )

This can be used to calculate the quantity

——| =2Icos”p = —sin 2p. (65)
OX |, 1 ONOp|, 1 2A
which can then be substituted into Egs. (60);
. I : A
1= — 8£ (ﬁsin&p) A= —IcosZgoX,
7 (66)

: o (1 . : A
<p—w(I,)\)+E(ﬁsm&p))\—)\—ksm%ox.

Here the frequency w(I,A) has been calculated as if A were time-independent; that is
w(I,A) = A. Since in this case the slowly varying parameter has been chosen as A = w one
can simply replace A by w in Egs. (60), eliminating the artificially introduced .

The first equation shows that dI/dt is not identically zero, but the fact that cos2¢p
averages to zero shows that the equation implies that dI/dt averages to zero to the extent
that I is constant over one cycle and can therefore be taken outside the averaging. Though
this statement may seem a bit circular—if I is constant then [ is constant—it shows why
I is approximately constant and can be the starting point of an estimate of the accuracy
to which this is true.

The new Hamiltonian is obtained from Egs. (59) and (65),

05y

H' (¢, 1,1) = E(Lw(t) + "

; .
o= ITw(t) + = sin2p -, (67)
ol 2 w

where the time dependence is expressed as the dependence on time (but not amplitude)
of the “natural frequency” w(t). The linearity of the oscillator is here reflected by the
fact that H' depends linearly on I. Problems below illustrate how this can be exploited
to complete the solution in this circumstance. Eq. (67) can be used to check Egs. (66) by
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substituting into Hamilton’s equations though that is not different from what has already
been done.

The angle ¢ has appeared in these equations only in the forms sin ¢, cosp, sin 2y,
cos2¢. This is not an accident since, though the abbreviated action is augmented by
2nl every period, with this subtracted it is necessarily a periodic function of ¢. The

accumulating part does not contribute to % because I is held constant. It follows

a1
that H' is a periodic function of ¢ with period 27 and can therefore be expanded in a

Fourier series with period 27 in variable ¢. For the particular system under study this

Fourier series has a single term, sin 2¢.

Problem .1. Eq. (62) gives a transformation (q,p) — (I, ). Derive the inverse trans-

formation (I, ) — (q,p).

Problem .2. Consider a one dimensional oscillator for which the Hamiltonian expressed
in action-angle variables is

H = wl + €I cos® .

where w and € are constants (with € not allowed to be arbitrarily large). From Hamilton’s
equations express the time dependence ¢(t) as an indefinite integral and perform the

integration. Then express I(t) as an indefinite integral.

Problem .3. For the system with Hamiltonian given by H(q,p,t) = % + %mAQ (t)q? as
in Eq. (61), consider the transformation (¢, p) — (Q, P) given by

Q= — tan™! (C (@—qi“)>a
q\m
2 2
_mirq .
P_2<r2+(m qr)),

where r(t) will be specified more precisely in a later problem but is, for now, an arbitrary

(68)

function of time. Show that this transformation is symplectic. Note that this same Hamil-
tonian applies to the transverse motion of a particle in an accelerator. In that context
the particle is said to be executing “betatron oscillations”. The solution to the problem is
therefore equivalent to the so-called “Courant-Snyder formalism” describing betatron mo-
tion in a ring containing “linear” focusing elements, especially quadrupoles or “gradient

magnets”.
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Problem .4. For the same system, in preparation for finding the generating function
G(q,Q,t) defined in Eqgs. (8) and (10), re-arrange the transformation equations of the
previous problem into the form P = P(q,Q,t) and p = p(q,Q,t). Then find G(q,Q,1t)

such that
oG oG

p:a—q, P:—%. (69)
Problem .5. In preparation for finding the new Hamiltonian H'(Q, P, t) and expressing it
(as is obligatory) explicitly in terms of Q and P, invert the same transformation equations
into the form ¢ = ¢(Q, P,t) and p = p(Q, P,t). Then find H'(Q, P,t) and simplify it by

assuming that r(¢) satisfies the equation
P+ X () r—rT3=0. (70)
Then show that @ is ignorable and hence that P is conserved.

Problem .6. Assuming that the system studied in the previous series of problems
is oscillatory, find its action variable and relate it to the action variable E/w of simple

harmonic motion.

EXAMPLES OF ADIABATIC INVARIANCE

Variable length pendulum

Consider the variable-length pendulum shown in Fig. 3. Tension 7" holds the string which
passes over a frictionless peg, the length of the string below the peg being [(¢). Assuming
small amplitude motion the “oscillatory energy” of the system F. is defined so that the
potential energy (with pendulum hanging straight down) plus kinetic energy of the system
is —mgl(t) + Eosc. With fixed [,

1
Eoe = —mgl92

2 max’

(71)

If the pendulum is not swinging, Fs. continues to vanish when the length is varied slowly
enough that the vertical kinetic energy can be neglected. We assume the length changes

slowly enough that [2 and [ can be neglected throughout.
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Figure 3: Variable-length pendulum. The fractional change of length
during one oscillation period is less than a few percent.

The equation of motion is 3
-~ 16
9+T+%sin9:0. (72)

For “unperturbed” motion the second term is neglected, and the (small amplitude) action

[
I = \/;Eosc- (73)

Change dl in the pendulum length causes change dfax in maximum angular amplitude.

is given by

The only real complication in the problem is that the ratio of these quantities depends on
0. The instantaneous string tension is given by mgcos 6 + mlf? — mi, but we will neglect
the last term. The energy change dF,s for length change dl is equal to the work done

—Tdl by the external agent acting on the system less the change in potential energy;
dE e = — (mg cos O + ml92> dl +mgdl. (74)

Continuing to assume small oscillation amplitudes,
dEose 1

_ = 2 2
T 2mg9 milo“. (75)

The right hand side can be estimated by averaging over a complete cycle of the unperturbed

motion and for that motion

1 — 1
07 = SOy and 07 = Q%efnax.

(76)

As a result, using Eq. (71), we have

dEosc . Eosc
a2 (77)
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Then from Eq. (73)
Sl e ~ Zoe ), 78
di \ﬁ a2 gl (78)

Here we have treated both [ and FEys as constant and moved them outside the averages.

The result is that I is conserved, in agreement with the general theory.

Charged particle in magnetic field

Figure 4: A charged particle moves in a slowly varying, uniform magnetic
field.
Consider a charged particle moving in a uniform magnetic field B(¢) which varies slowly

enough that the Faraday law electric field can be neglected, and also so that the adiabatic

condition is satisfied. With coordinate system defined in Fig. 4 the vector potential of such

a field is
1 1
A:l: = _QyB, Ay = §$B7 Az = 0, (79)
since

X y 2z

o) g o) 5

A, Ay A,

Introducing cylindrical coordinates, the (non-relativistic) Lagrangian is
(81)

1
L :§mU2 +eA-v
1 B .
=y’ + 5 (ke ag) - (D= y) (=)
1 . 1 .
=—m <1'"2 +r26% + 22> + 563 (t) r26.
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Since this is independent of #, the conjugate 1r1r101r1rlentu1r1r1,Jr
2, 1 2
Py =mr-0 + 563 (t)re, (82)

is conserved. With B fixed, and the instantaneous center of rotation chosen as origin, a
condition on the unperturbed motion is obtained by equating the centripetal force to the

magnetic force;

mb = —eB , (83)
with the result that
Py = %mrzé, (84)
and the action variable is
Iy = % ]{Pgde = Py. (85)

It is useful to express Iy in terms of quantities that are independent of the origin using

Eq. (83),

2,2
= (o) =0 e
where v is the component of particle velocity normal to the magnetic field.
Recapitulating, vi /B is an adiabatic invariant. The important result is not that Py is
conserved when B is constant, which we already knew, but that it is conserved even when
B varies (slowly enough) with time. Furthermore, since the change in B is to be evaluated
at the particle’s nominal position, changes in B can be due either to changes in time of
the external sources of B or to spatial variation of B in conjunction with displacement
of the moving particle’s center of rotation (for example parallel to B). Py is one of the

important invariants controlling the trapping of charged particles in a magnetic “bottle”.

This is pursued in the next section.

T Recall that (upper case) P stands for conjugate momentum which differs from (lower case) p which is
the mechanical momentum.
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Z
B
' Y
| //
(@) gyration (b) plus longitudinal drift (c) plus perpendicular drift

Figure 5: (a) Charged particle gyrating in a non-uniform magnetic field.
Its longitudinal and azimuthal motion is exhibited in (b) and (c). The
reduction in radius of gyration near the end of the trap is also shown.

Charged particle in a magnetic trap

A particle of charge e moves in a time-independent, axially-symmetric magnetic field
B(R). Symbolizing the component of particle velocity normal to B by w, the approximate
particle motion follows a circle of radius p with angular rotation frequency w. (known as

the “cyclotron frequency”). These quantities are given by

muw W eB
= — d =2T— = — 87

with the latter being independent of the speed of the particle. The field is assumed to be

non-uniform but not too nonlinear. This is expressed by the condition

VB
p% << 1. (88)

This condition assures that formulas derived in the previous section are applicable and the
particle “gyrates” in an almost circular orbit. This is also a kind of adiabatic condition
in that the particle retraces pretty much the same trajectory turn after turn. The system
is then known as a “magnetic trap”; the sort of magnetic field envisaged is illustrated in

Fig. 5 which also shows typical particle orbits.
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But in general the particle also has a component of velocity parallel to B so the center
of the circle (henceforth to be known as the “guiding center”) also travels along B. This
motion is said to be “longitudinal”. There will also be an even slower drift of the guiding
center “perpendicular” to B. This is due to the fact that condition (88) is not exactly
satisfied and the radius of gyration is least in regions where B = |B]| is greatest.

To describe these motions we introduce the radius vectors shown in Fig. 5(a).
r=R+p. (89)

The corresponding three velocities v = dr/dt, u = dR/dt, and w = dp/dt satisfy
v=u+w. (90)

Presumeably R and |p| are slowly-varying compared to p which gyrates rapidly.

Since particles with large longitudinal velocities can escape out the ends of the bottle (as
we shall see) the ones that have not escaped have transverse velocity at least comparable
with their longitudinal velocity and it is clear from condition (88) that the transverse
guiding center drift velocity is small compared to the gyration velocity. These conditions

can be expressed as
vi=u, and u; <<w, andhence v, ~w. (91)

General strategy. To start one will ignore the slow motion of the guiding center in
analysing the gyration. (This part of the problem has already been analysed in section 8
but we will repeat the derivation using the current notation and approximations.) Having
once calculated the adiabatic invariant u for this gyration it will subsequently be possible to
ignore the gyration (or rather to represent it entirely by p) in following the guiding center.
This accomplishes a kind of “averaging over the fast motion”. It will then turn out that
the motion of the guiding center itself can be similarly treated on two time scales. There
is an oscillatory motion of the guiding center parallel to the z-axis in which the azimuthal
motion is so slow that it can be ignored. This motion is characterized by adiabatic invariant
I ||(,u). As mentioned already, its only dependence on gyration is through p. Finally there
is a slow azimuthal drift I (4, ) that depends on gyration and longitudinal drift only

through their adiabatic invariants. In this way, at each stage there is a natural time scale
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defined by the period of oscillation and this oscillation is described by equations of motion
that neglect changes occuring on longer time scales and average over effects that change
on shorter time scales.

Gyration. In relativistic mechanics the components of the canonical momentum are given

by
P, =mw+eA |,
(92)
P = muy +ehy,
where approximations (91) have been used. The non-relativistic Hamiltonian is
2 P, —eA? (P”—eA)
g P (ProeAl) | 7. (93)

2m 2m 2m

this is the mechanical energy expressed in terms of appropriate variables. There is no
contribution from a scalar potential since there is no electric field.

The gyration can be analysed as the superposition of sinuisoidal oscillations in two
mutually perpendicular directions in the transverse plane. For adiabatic invariant I, we

can take their average

1

Iy = Am

1
(PLydz + Pyrydy) = o fPL -dly, (94)

where dl; is incremental tangential displacement in the (z,y) plane, “right handed” with
the (x,y, z) axes being right handed. It is therefore directed opposite to the direction of
gyration as shown in Fig. 4 since B is directed along the (local) positive z-axis. Using

Eq. (92) we have
1 e mwp
I,=— -l—A-l_———B
g 47T%mw dL+47r7{ dl; + / zdS, (95)

where dS is an incremental area in the plane of gyration. The first term is negative because
the gyration is directed opposite to dl;. The second term (in particular its positive sign)

has been obtained using Stokes’s theorem and B = V x A. Using Eq. (87) we get

eBp?
I, = — 1 (96)

This agrees with Eq. (86). I, can be compared to the “magnetic moment” p = %sz

of the orbit (which is equal to the average circulating current ew./(27) multiplied by the
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orbit area mp2.) Except for a constant factor, z and I, are identical so we can take p as
the adiabatic invariant from here on. If we regard p as a vector perpendicular to the plane
of gyration then

p-B <O0. (97)

We also note that the kinetic energy of motion in the perpendicular plane is given by
EL:%mwzz—u-B:uB. (98)
Longitudinal drift of the guiding center. Because of its longitudinal velocity the
particle will drift along the local field line. Since the field is non-uniform this will lead
it into a region where B is different. Because the factor Bp? remains constant we have
p ~ B2 and (by Eq. (87)) w ~ B/2_ Superficially this seems contradictory since
the speed of a particle cannot change in a pure magnetic field. It has to be that energy
is transferred to or from motion in the longitudinal direction. We will first analyse the
longitudinal motion on the basis of energy conservation and later analyse it in terms of
the equations of motion.
The total particle energy is given by

1
E=uB(R)+ 5m uj- (99)

Since the first term depends only on position R it can be interpreted as potential energy.
It is larger at either end of the trap than in the middle. Since both E and p are conserved,

this equation can be solved for the longitudinal velocity

uy = j:\/% (E — uB (R)). (100)

In a uniform field u would be constant, but in a spatially variable field it varies slowly. As
the particle drifts toward the end of the trap the B field becomes stronger and u becomes
less. At some value Z;, the right hand side of Eq. (100) vanishes. This is therefore a
“turning point” of the motion and the guiding center is turned back to drift toward the
center and then the other end. Perpetual longitudinal oscillation follows, but the motion
may be far from simple harmonic, depending as it does on the detailed shape of B(R)—for
example B can be essentially constant over a long central region and then become rapidly

larger over a short end region.
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In any case an adiabatic invariant [ for this motion can be calculated (on-axis) by

1

where, by symmetry (as in Eq. (79)) A, vanishes on-axis. Then the period of oscillation

can be calculated using Eq. (50);

Ty =2
I WaE”

(102)

Problem .7. For the long uniform field magnetic trap with short end regions mentioned
in the text, use Eq. (102) to calculate the period of longitudinal oscillation T) and show

that the result is the same as one would obtain from elementary kinematic considerations.

Equation of motion of the guiding center. We have still to study the transverse drift
of the guiding center and in the process will corroborate the longitudinal motion inferred
purely from energy considerations in the previous paragraph. The equation of motion of
the particle is

d(u+w)

m————— =e(u+w)x (Blo+[(p-V)B]), (103)

which approximates the magnetic field by its value B[y at the guiding center plus the first
term in a Taylor expansion evaluated at the same point. We wish to average this equation

over one period of the (rapid) gyration which is described relative to local axes by

pr =wcost, p, =wsinb,

(104)
wy = wsinf, w, = —wcosb.
When Eq. (103) is averaged with all other factors held fixed, the result is
du
mazeuxB%—e((wxp-V)B) (105)

Terms with an odd number of factors of p and w have averaged out to zero. The second

term evaluates to

% ¥ 3

e((wx p-V)B) = e(det Wy wy o5 0 )
9B, 9B, 9B. 0B.

Pz oz T Py~ay Pway+ﬂyayy Pz og t Py~ay,

__ewp <§<832 +5’8BZ> __Wpgn

(106)

2 ox oy 2
= -V (uB),
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where V- B = 0, and B, ~ B have been used. The equation of motion is therefore
(107)

mc(ll—ltl:euxB—V(uB).

When applied to the longitudinal motion of the guiding center, the final term can be seen
to be consistent with our earlier interpretation of u B as a potential energy. Furthermore,
the only influence of gyration is through the parameter p.

The magnitude of the magnetic field presumably falls with increasing R. this causes

the gyration to be not quite circular, with its radius increased by Ap when the field is

reduced by AB;
Ap AB
L — 1
p 5 (108)

Along with the cyclotron frequency $¢ this can be used to estimate the ration of the

transverse drift velocity v to w;
ur  (we/2m)Ap  (we/2m) (@B/Or)p® 1 p OB _ 1 p (109)
wB 27 B Or 2 Rtyp’

w w
where Ry, is a length of the order of the transverse dimensions of the apparatus. Since

typical values of the cyclotron radius are much less than this, and since u and w have

comparable magnitudes, our estimate shows that
(110)

u; <<w, and wu;] << uj|-

There will nevertheless be a systematic azimuthal motion of the guiding center on a circle

of some radius R centered on the axis. Let the angular frequency of this motion be w .

We then have
wl << w) << We. (111)

By a calculation just like that by which I, was calculated an adiabatic invariant can also

be obtained for this perpendicular drift;
mu; eBR} eR:B

I =—
+ 2 1 4(

In practical situations the second term is negligible and we conclude that the third adiabatic

_ 2:’;) . (112)

invariant | is proportional to the magnetic flux linked by the guiding center as it makes

a complete azimuthal circuit.
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ADIABATIC INVARIANCE APPLIED TO THE PROTON LINAC

Sections 3.5 and 3.6 of G. Loew and R. Talman, Lectures on the ELementary Principles
of Linacs, contained in Physics of High Energy Particle Accelerators, AIP Conference
Proceedings 105, M. Month Editor, 1983, describe the application of adiabatic invariance

to the longitudinal of (non-relativistic) protons in an Alvarez Linac.



